FIT and MTBF for Non-Repairable Systems

Dr. Horst Lewitschnig

2023-07-30

FIT-Rate

The FIT-Rate is the number of expected failures per 10^9 operating hours.

FIT-Rate - alternative formulations

- The FIT-Rate is the average ppm-value per 10³ operating hours.
- FIT is the λ of the exponential distribution.

MTBF vs. FIT-Rate

$$MTBF = \frac{10^9}{FIT}$$
 hours

FIT-Rate for Exponential Distribution

Typically, the FIT-Rate refers to the cumulative operating hours.

Fails	Devices	operating	operating	FIT-Rate
		hours / device	hours overall	
1	1	10 ⁹	10 ⁹	1
1	10^{3}	10 ⁶	10 ⁹	1
1	10 ⁶	10 ³	10 ⁹	1
1	10 ⁹	1	10 ⁹	1

MTBF for Non-Repairable Systems

Assumption: Exponential distribution, $F(t) = 1 - e^{-\lambda t}$. Order statistics

$$F_{t_{(i)}}(t) = \sum_{j=i}^n F(t)^j [1 - F(t)]^{n-j}, \quad 1 \leqslant i \leqslant n.$$

Time to first failure

$$P(\min(T_1, T_2, \ldots, T_n) < t).$$

Distribution of the minimum

$$F_{t_{(1)}}(t) = 1 - [1 - F(t)]^n = 1 - e^{-n\lambda t},$$

$$E_{t_{(1)}} = \frac{1}{n \cdot \lambda}.$$

MTBF for Non-Repairable Systems

In operating hours:

$$n \cdot E_{t_{(1)}} = \frac{n}{n \cdot \lambda} = \frac{1}{\lambda}.$$

Memoryless of the exponential distribution:

$$P(T > t + s | T > s) = R(t|s) = \frac{R(t+s)}{R(t)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda(s)}} = e^{-\lambda(t)},$$

 $F(t|s) = F(t).$

MTBF for Non-Repairable Systems

After the 1st failure, n-1 devices remain. Time to the next failure:

$$P(min(T_1, T_2, ..., T_{n-1}) < t).$$

Distribution of the minimum

$$F_{t_{(1)}}(t) = 1 - [1 - F(t)]^{n-1} = 1 - e^{-(n-1)\lambda t},$$

$$E_{t_{(1)}} = \frac{1}{(n-1) \cdot \lambda}.$$

In operating hours:

$$(n-1)\cdot E_{t_{(1)}}=\frac{n-1}{(n-1)\cdot \lambda}=\frac{1}{\lambda}.$$

FIT-Rate for Exponential Distribution

Typically, the FIT-Rate refers to the cumulative operating hours.

	time	in operating hours
Expected time until 1st failure	$\frac{1}{n \cdot \lambda}$	$\frac{n-1}{(n-1)\cdot\lambda} = \frac{1}{\lambda}$
Expected time from 1st to 2nd failure	$\frac{1}{(n-1)\cdot\lambda}$	$\frac{n-1}{(n-1)\cdot\lambda} = \frac{1}{\lambda}$
Expected time from 2st to 3rd failure	$\frac{1}{(n-2)\cdot\lambda}$	$\frac{n-2}{(n-2)\cdot\lambda} = \frac{1}{\lambda}$
		$\frac{1}{\lambda}$

⇒ constant failure rate.